truck-code
include
vision
model.h
1
// * model.h
3
// *
4
// * @author Abdul Rahman Kreidieh
5
// * @version 1.0.0
6
// * @date February 24, 2019
7
// */
8
//
9
//#ifndef INCLUDE_VISION_MODEL_H_
10
//#define INCLUDE_VISION_MODEL_H_
11
//
12
//#include <vector>
13
//#include <tuple>
14
//#include <Eigen/Dense>
15
//#include <MiniDNN.h>
16
//
17
//using namespace MiniDNN;
18
//using namespace Eigen;
19
//using namespace std;
20
//
21
//
23
//#define NoNonlinearity 0
24
//#define ReLUNonlinearity 1
25
//
26
//
27
//class VisionModel
28
//{
29
//private:
30
// Network _net;
31
// vector<Layer*> _layers; /** list of neural network layers */
32
// int _inputs; /** number of inputs to the first layer */
33
// int _outputs; /** number of outputs from the last layer */
34
// int _num_layers; /** number of the layers in the network */
35
//
36
//public:
37
// VisionModel(int inputs);
38
// virtual ~VisionModel();
39
//
40
// /** Add a fully connected layer.
41
// *
42
// * @param units number of nodes in the new layer
43
// * @param activation output non-linearity
44
// */
45
// virtual void add_fc(int units, int activation=NoNonlinearity);
46
//
47
// /** Add a batch normalization layer. */
48
// virtual void add_batchnorm();
49
//
50
// /** Add a convolutional layer.
51
// *
52
// * @param f filter size
53
// * @param s stride
54
// * @param p padding
55
// * @param nc number of channels
56
// * @param activation output non-linearity
57
// */
58
// virtual void add_conv(int f, int s, int p, int nc, int activation=NoNonlinearity);
59
//
60
// /** Add a pooling layer.
61
// *
62
// * @param f filter size
63
// * @param s stride
64
// */
65
// virtual void add_pooling(int f, int s);
66
//
67
// /** Import a list of weights into the layers of the network.
68
// *
69
// * @params weights
70
// * the weights for each layer of the neural network
71
// */
72
// virtual void import(vector<MatrixXd> weights);
73
//
74
// /** Perform a forward pass on the model.
75
// *
76
// * @param input
77
// * input to the neural network
78
// * @returns
79
// * the output from the neural network
80
// */
81
// virtual MatrixXd compute(MatrixXd input);
82
//};
83
//
84
//
85
//VisionModel::VisionModel(int inputs) {
86
// this->_inputs = inputs;
87
// this->_num_layers = 0;
88
// this->_outputs = 0;
89
//}
90
//
91
//
92
//VisionModel::~VisionModel() {
93
// for (int i=0; i<this->_num_layers; i++)
94
// delete this->_layers[i];
95
//}
96
//
97
//class MobileNet : public VisionModel
98
//{
99
//
100
//};
101
//
102
//
103
//class MobileNetV2 : public VisionModel
104
//{
105
//
106
//};
107
//
108
//
109
//#endif /* INCLUDE_VISION_MODEL_H_ */
Generated by
1.8.13